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Modulating the Redox Property of a Flavin Analog
Through Adjustment of Its Microenvironment 

in a Self-Assembled Monolayer
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ABSTRACT

Self-assembled monolayers (SAMs) have been used to examine the effects of electrostatic interactions and chang-
ing microenvironment on the pH-dependent redox properties of a flavin analog. The pKa value of the N1 proton
for the reduced flavin analog was determined to be , 9.7 in the SAM of disulfide 5, 8.5 in the SAM of disulfide
7, and 6.7 when free in solution. The pyridinium ion of 7 stabilizes the anionic form of reduced flavin analog and
provides a dielectric medium more closely resembling that experienced by the flavin analog free in solution. 
Antioxid. Redox Signal. 5, 731–736.
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INTRODUCTION

FLAVOENZYMES are an important class of en-
zymes present in most plants and animals

(16, 23, 37). Flavins [e.g., flavin mononucleotide
(FMN) and flavin adenine dinucleotide (FAD)]
are coenzymes that catalyze many reactions,
such as oxidations, dehydrogenations, hydrox-
ylations of aromatic compounds, and activa-
tion of oxygen (7, 11, 15, 17, 37). In addition,
current research demonstrates that flavoen-
zymes can be used to inhibit self-splicing of cer-
tain types of genes (19). Of importance in these
reactions is the isoalloxazine ring (Fig. 1), the
redox active component of the coenzymes. The
isoalloxazine moiety of flavins and analogs may
undergo a one- or two-electron transfer process
(Scheme 1; Et, ethyl; Me, methyl), depending
on the apoprotein that it complexes with or the
medium in which it resides (12, 16, 18, 35, 37).

In biological systems, noncovalent interactions
(including p-stacking, hydrophobic effects, hy-
drogen bonding, and electrostatic interactions)
(2–4, 25, 30, 31, 35) between flavins and apopro-
teins play an important role in varying the re-
dox potential of the isoalloxazine moiety over
a range of as much as 600 mV (37). A funda-
mental understanding of the factors influenc-
ing the redox properties of flavins can be ex-
pected to provide insight into biological
mechanisms for tuning their redox potentials
and may allow control of its catalytic proper-
ties in nonbiological systems. In this article, we
report the use of self-assembled monolayers
(SAMs) to examine the effects of electrostatic
interactions and changing microenvironments
on the redox potential of the isoalloxazine 
moiety.

SAMs of terminally functionalized alkyl thi-
ols and disulfides (26, 27, 36, 38) serve as use-
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ful models for fundamental studies of the mi-
croenvironmental effects on electron-transfer
kinetics (5, 6, 10, 13, 14, 21, 22, 29) and other
phenomena in interfacial science (24, 28, 32).
Our research group is interested in studying
the redox properties of flavin analogs in dif-
ferent microenvironments provided by SAMs.
Previous studies by our group have found that
the pH-dependent redox properties of the
isoalloxazine unit in a SAM prepared from
disulfide 5 (Fig. 2) are different from those of 1
(Scheme 1) free in solution (34). The pKa value
of the N1 proton of 4 (Scheme 1) in solution is
, 6.7, as determined from the inflection point
of the E0 versus pH plot (9). This value is con-
sistent with those reported from reduced FMN
and FAD in aqueous solutions (8, 18). The pKa
value of the N1 proton of its analog in the SAM
of 5 is, however, 3 units higher. This striking
difference was attributed to the instability of
the anions in the SAM resulting from the elec-
trostatic repulsion in the low dielectric envi-
ronment of the SAM (1, 20).

In this study, we examine the effects of in-
troducing a cationic species into the SAM to en-
hance the stability of the anions by electrosta-
tic attraction and p-stacking interactions and
by changing the dielectric medium provided by
the SAM. We synthesized disulfides 6–8 (Fig.
2) and studied the electrochemical properties
of their SAMs by cyclic voltammetry. Their
properties are compared with those of a SAM
prepared from 5.

MATERIALS AND METHODS

Disulfides 5 and 6 were prepared according
to a previously published procedure (33).
Disulfides 7 and 8 were synthesized by reac-
tions of 6 and dibromide 10, respectively, with
neat pyridine at 50°C for 24 h as shown in
Scheme 2 (Et, ethyl; Ph, phenyl).

SAMs were prepared by placing gold (300 Å
thickness)-coated silicon wafers into , 1 mM
solutions of the disulfides in acetonitrile for
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FIG. 1. Structures of flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and the isoalloxazine
ring.

Scheme 1.
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24–48 h. The redox potentials were determined
over a range of pH values using cyclic voltam-
metry. A standard three-electrode cell was
used. The piece of gold with the SAM was used
as the working electrode, a Bioanalytical Sys-
tems Ag/AgCl electrode was used as the ref-
erence electrode, and a platinum wire was used
as the counter electrode. The buffer solutions
were purged with argon and maintained un-
der an argon atmosphere during the electro-
chemical experiments. The surface coverage of
the isoalloxazine moiety in different SAMs was
calculated from the integrated area of the re-
duction or oxidation peak and is reported
without correction for roughness factor. The
formal potentials (E0) of the isoalloxazine moi-
ety in the SAMs at different pH values were
determined from the average of the reduction

and oxidation peak potentials in the cyclic
voltammograms at steady state.

RESULTS AND DISCUSSION

The surface densities of the isoalloxazine
moiety in the SAMs from 5, 6, and 7 were cal-
culated to be approximately 3.6 3 10210, 2.1 3
10210, and 1.5 3 10210 mol/cm2, respectively.
The area per isoalloxazine unit (determined
from surface coverage) in the SAMs from 5was
about two times larger than the calculated area
of 21.4 Å2 per molecule in a close-packed SAM
of alkanethiols on gold (36). It is unlikely that
the methylene chains in the SAMs from 5 are
close-packed or in a high degree of order due
to the short methylene chains and the large
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FIG. 2. Structures of disulfides 5–8. Et, ethyl.

Scheme 2.
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isoalloxazine head group. The surface densities
of the isoalloxazine moiety in the SAMs of un-
symmetrical disulfides 6 and 7 were not half of
that of the SAMs of 5. Apparently, the size and
charge of the other head group influenced the
surface densities of these unsymmetrical disul-
fides and hence the isoalloxazine unit in these
SAMs. The surface coverage of the isoallox-
azine unit in a SAM of 7 was less than that of
a SAM of 6 and is presumably caused by the
electrostatic repulsions and larger size of the
pyridinium ring in 7 compared with the
bromine atom in 6.

As shown in the plot of formal potentials (E0)
versus pH (Fig. 3), the pH-dependent redox po-
tentials of the flavin analog in the SAM pre-
pared from 7 differ significantly from those of
the SAM of 5. The inflection point of the plot
yields a pKa value of , 8.5 for the N1 proton of
the reduced isoalloxazine in the SAM of 7. This
is approximately a 10-fold increase in the acid
dissociation constant (Ka) compared with that
in the SAM of 5. Cyclic voltammetry studies of
the SAMs prepared from disulfide 8 showed no
redox activity as expected. This suggested that
the difference in the pH-dependent redox po-
tential observed for the SAM of 7 compared

with the SAM of 5 is not caused by any redox
activity of the pyridinium moiety.

The substantial increase in the stability of the
anion of reduced isoalloxazine in the SAM of 7
compared with the SAM of 5 could be attrib-
uted to several reasons. First, there is less re-
pulsion among the anions because the surface
density of the isoalloxazine rings in the SAMs
of 7 is only , 40% of that in the SAMs of 5. Sec-
ond, the presence of positively charged pyri-
dinium ions in the SAM stabilizes the anion of
the reduced isoalloxazine by electrostatic at-
traction and p-stacking interactions. Third, the
positively charged pyridinium ions in the SAM
change the dielectric medium provided by the
SAM, thus providing a microenvironment
more closely resembling flavin free in solution.

To examine the effect of reduced surface cov-
erage of the flavin analog in a SAM, we stud-
ied the pH-dependent redox potentials of a
SAM formed from disulfide 6. Surprisingly,
there is no significant change in the pKa value
of the N1 proton of reduced isoalloxazine in the
SAM of 6 compared with that of a SAM of 5.
A similar result was observed when a dodecyl
chain instead of a bromooctyl chain was pres-
ent in the unsymmetrical disulfide (34). One
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FIG. 3. Plot of the pH dependence of the redox potential (E0) of isoalloxazine in different SAMs.
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would expect reduced repulsion and increased
stability at the anions as the density of the isoal-
loxazine moiety decreased. The observed re-
sults may be due to the low dielectric environ-
ment provided by the dodecyl or bromooctyl
chains being unfavorable for anion formation.
Nevertheless, the results suggested that the ef-
fect of decreased surface density of the isoal-
loxazine moiety was not significant compared
with the stabilizing effects provided by the
pyridinium ions through electrostatic attrac-
tions, p-stacking interactions, and changing of
the dielectric medium in the monolayer of 7. To
differentiate further the effects of electrostatic
attractions, p-stacking interactions, hydropho-
bicity, and dielectric environments, studies on
isoalloxazine-tethered unsymmetrical disul-
fides with other functional groups (such as hy-
droxyl or quaternary ammonium groups) are
under way.

In summary, we have demonstrated the abil-
ity to modulate the redox potential of a flavin
analog in a monolayer by adjusting the prop-
erties of the other monolayer components.
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